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Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce
a large diversification of the roles of the nodes within the network. Several centrality measures have been
introduced to rank nodes based on their topological importance within a graph. Here we review and compare
centrality measures based on spectral properties of graph matrices. We shall focus on PageRank �PR�, eigen-
vector centrality �EV�, and the hub and authority scores of the HITS algorithm. We derive simple relations
between the measures and the �in�degree of the nodes, in some limits. We also compare the rankings obtained
with different centrality measures.
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I. INTRODUCTION

Complex systems can be represented as networks, where
the main units of the system become nodes and interacting
units are connected by edges. The last years have witnessed
an intense research activity on networks by the scientific
community, after the discovery that many systems in nature,
society, and technology turn into graphs with peculiar prop-
erties �1,2�. In particular, many networks are characterized
by a heterogeneous distribution of the number of neighbors
of a node, or degree, where nodes with low degree coexist
with nodes with large degree �hubs�. Such heterogeneity is
responsible for a number of remarkable features of real net-
works, such as resilience to random failures and attacks �3�,
and the absence of a threshold for percolation �4� and epi-
demic spreading �5�. The presence of nodes with different
degrees means that there is a broad diversification of their
roles within the graph. Centrality measures are designed to
rank graph nodes based on their topological importance
�6,7�. Among the most popular centrality measures, we men-
tion degree itself, but also measures depending on shortest
paths between nodes pairs, like node betweenness and close-
ness. There are as well centrality measures that depend on
spectral properties of graph matrices. These measures are
important because they are usually associated with simple
dynamic processes taking place on graphs, like diffusion. In
particular, the PageRank algorithm, proposed by the Google
founders Brin and Page �8�, managed to turn Google into the
leading interface between users and the World Wide Web. In
recent work spectral properties of graph matrices have also
been used to characterize the participation of nodes in net-
work subgraphs �subgraph centrality� �9,10� and to estimate
the bipartitivity of graphs �11�.

However, spectral centrality measures have not been
much investigated in the physics literature. We shall intro-
duce and review four centrality measures: PageRank, eigen-
vector centrality �EV��12�, and the hub and authority scores
introduced by Kleinberg for his HITS algorithm �13�. These
measures are usually adopted on directed graphs; we shall as
well discuss extensions to the undirected case, where appli-
cable.

In Sec. II we present the measures and describe them in
some detail. Analytical and numerical results on particular
graphs will be shown in Sec. III, whereas in Sec. IV we shall
compare the rankings of nodes of real graphs for different
centrality measures. Conclusions will be reported in Sec. V.

II. CENTRALITY MEASURES

The basic matrix of a graph is the adjacency matrix A,
where the element Aij equals 1 if nodes i and j are connected
by a link, 0 if they are not. If the network is directed, the
adjacency matrix is not symmetric. In this case, it is neces-
sary to distinguish between two types of links adjacent to a
node, i.e., links pointing to the node �incoming� and links
pointing outside �outgoing�. Therefore, there are two types of
degree: indegree, i.e., the number of incoming links; outde-
gree, i.e., the number of outgoing links. Likewise, one dis-
tinguishes between the in-neighbors of a node, i.e., the nodes
pointing at the node, and the out-neighbors, i.e., the nodes
pointed at by the node. The directedness of the links has a
number of important implications, involving both some basic
structural concepts, like connectivity, and processes taking
place on the network. For instance, a random walk is a sta-
tionary process on any undirected graph, but it is not in gen-
eral on a directed graph, due to the possible presence of
dangling ends, i.e., nodes with zero outdegree, that act as
sinks for the process. On the other hand, diffusion leads to a
natural definition of centrality, based on the frequency with
which a walker stops by a node during the process. In order
to make a diffusive process stationary on a directed graph,
one needs to give the walker the opportunity to leave from a
dangling end. PageRank offers a simple solution, which we
describe below.

A. PageRank

PageRank �PR� is the prestige measure used by Google to
rank Web pages. It is supposed to simulate the behavior of a
user browsing the Web. Most of the time, the user visits
pages just by surfing, i.e., by clicking on hyperlinks of the
page he is on; otherwise, the user will jump to another page
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by typing its URL on the browser, or going to a bookmark,
etc. On a graph, this process can be modeled by a simple
combination of a random walk with occasional jumps toward
randomly selected nodes. This can be described by the
simple set of implicit relations

p�i� =
q

n
+ �1 − q� �

j:j→i

p�j�
kout�j�

, i = 1,2, . . . ,n . �1�

Here, n is the number of nodes of the graph, p�i� is the PR
value of node i, kout�j� the outdegree of node j, and the sum
runs over the nodes pointing toward i. The damping factor q
is a probability that weighs the mixture between random
walk and random jump. On practical applications it is usu-
ally set to small values �typically 0.15�. For any q�0 the
process reaches stationarity, as a walker has a finite �no mat-
ter how small� probability to escape from a dangling end,
whenever it lands there. When q=0, the process may not be
stationary and PR is ill defined. When q=1, instead, the
jumping process dominates and all nodes have the same PR
value 1 /n. PR goes beyond indegree: in order to have a large
PR value for a node it is important to have many neighbors
pointing at a node, i.e., large indegree, but it is also important
that the neighbors have large PR values. So, if two nodes
have equal indegree, the node with more “important” neigh-
bors will have larger PR.

Solving the set of equations �1� is equivalent to solving
the eigenvalue problem for the transition matrix M, whose
element Mij is given by the following expression:

Mij =
q

n
+ �1 − q�

1

kout�j�
Aji. �2�

PR is just the principal eigenvector of M, and is usually
determined with the power method, i.e., by repeatedly mul-
tiplying the matrix M by an arbitrary vector until all the
entries of the resulting vector are stable. This is also the
procedure we adopted to compute the eigenvectors corre-
sponding to all centrality measures we studied.

The literature on PR is very large, because of its huge
impact on Web search. In one of the first theoretical studies
�14�, the dependence of PR on the damping factor was in-
vestigated. In general, the attention has been mostly focused
on the graph of the World Wide Web, where Web pages are
nodes and the hyperlinks their connections. Comparatively
little has been done to study the measure on more general
classes of networks. A recent mean field study �15� has
shown that the average PR value of nodes with the same
indegree is a linear function of indegree in the absence of
degree-degree correlations. In another study, some analytical
results were found on PR distributions on special classes of
graphs �16�. In Sec. III A we shall briefly summarize the
results of �16� and build upon them.

B. Eigenvector centrality

The EV is also based on the principle that the importance
of a node depends on the importance of its neighbors. In this
case the relationship is more straightforward than for PR: the
prestige xi of node i is just proportional to the sum of the

prestiges of the neighboring nodes pointing to it,

�xi = �
j:j→i

xj = �
j

Ajixj = �Atx�i. �3�

From Eq. �3� we see that xi is just the i component of the
eigenvector of the transpose of the adjacency matrix with
eigenvalue �. We notice that the trivial eigenvector with all
components equal to zero is always a solution of Eq. �3�. The
true EVC is then associated with the existence of nontrivial
solutions of the eigenvalue problem of Eq. �3�. From Eq. �3�
we see that nodes with indegree zero also have zero central-
ity: in general, nodes pointed at by nodes with zero centrality
also have zero centrality, and this effect will propagate to
other nodes, so that in many cases the EVC would not give
any information about a big number of nodes. To avoid this,
it is useful to make the following modification: to each node
we assign a prestige �, which is independent of its relation-
ships with the other nodes. Equation �3� is then modified as
follows:

xi = ��Atx�i + � . �4�

The role of the parameter � recalls that of the damping factor
q in PR. The parameter � weighs the relative importance of
the contribution of the peers versus that of the node itself.
The new measure is called �-centrality ��EV� �12� and is the
one we shall investigate in this paper. We remark that, in
contrast to PR, here the solutions do not have a natural in-
terpretation in terms of probability, so the sum of the
�-centralities need not be 1. However, we shall normalize
the final values by dividing them by their sum, so as to make
them add up to 1, for practical purposes.

C. HITS scores

Google’s PR was not the first prestige measure for Web
pages based on the Web’s graph representation. Shortly be-
fore the seminal paper by Brin and Page, Kleinberg �13� had
proposed another solution to the problem of ranking Web
sites based on their importance for the users. This solution
was the HITS algorithm, which distinguishes two types of
Web pages: hubs and authorities. Let us suppose that a user
submits a query through a search engine. If a page is very
relevant for this query, one can reasonably expect that it will
be pointed at by many other pages. However, the simple
indegree would not allow one to discriminate the relevant
pages from other pages with similar �large� indegree. An
important difference is that pages pointing to a relevant page
are likely to point as well to other relevant pages, so to create
a sort of bipartite structure where relevant pages �authorities�
are cited by special pages or indices �hubs�. Such bipartite
structures allow the relevant pages for the user query to be
identified. Therefore one assigns two scores to a page i of the
Web: the hub score xi and the authority score yi. Pages with
high authority scores are pointed at by pages with high hub
scores. In turn, a good hub points at �very� authoritative
pages. This mutually reinforcing mechanism is described by
the coupled relations

�yi = �
j:j→i

xj = �
j

Ajixj = �Atx�i, �5�

NICOLA PERRA AND SANTO FORTUNATO PHYSICAL REVIEW E 78, 036107 �2008�

036107-2



�xi = �
j:i→j

yj = �
j

Aijyj = �Ay�i, �6�

which can be rewritten in the form of simple eigenvalue
equations for both x and y by substitution

��xi = �AAtx�i, �7�

��yi = �AtAy�i. �8�

From Eqs. �7� and �8� we see that the hub and authority
scores are just eigenvectors of the matrices AAt and AtA. We
stress that both AAt and AtA are symmetric, whether A is
symmetric or not. The scores x and y correspond to the prin-
cipal eigenvectors of these matrices.

III. RESULTS

A. PageRank

In �16� the two main limits of the PR measure, corre-
sponding to q→0 and q→1, were investigated. Analytical
results can be derived for special graphs, such as graphs
grown with popular mechanisms, like preferential attachment
�17�. For our proofs we shall focus on the model by Dor-
ogovtsev, Mendes, and Samukhin �DMS� �18�, which gener-
ates graphs with power-law degree distributions with any
exponent larger than 2. In this model, at each time step a new
node is added to the graph and m links are set from the new
node to preexisting ones. The probability that a new node i
gets attached to a node j �with indegree kj� is

��kj,a� =
a + kj

�l=1
i−1�a + kl�

, �9�

where a is a positive constant. When a=m one recovers the
recipe of the original preferential attachment formulation of
Barabási and Albert �17�. In general, the exponent of the
indegree distribution �=2+a /m. For simplicity, we shall
study the special case in which m=1, i.e., each node has
outdegree 1 and the network is a tree. The results are, how-
ever, independent of m.

1. The limit q\0

We assume that q is very small. To the first order in q, and
remembering that each node has outdegree 1 by construction,
Eq. �1� takes the following form:

p�i� �
q

n
+ �

j:j→i

p�j�, i = 1,2, . . . ,n , �10�

which looks particularly simple, though not generally solv-
able. From Eq. �10� we see that the PR of a node equals a
constant plus the PR of its in-neighbors. This recipe enables
us to calculate PR recursively on simple trees, as shown in
Fig. 1, where we focus on a subgraph of a tree. Node A is the
root of the subgraph as every walk starting on any of the
nodes will reach A at some stage. We call any node with this
property a predecessor of A. The PR value of any node of the
graph is determined only by its predecessors. In the case
illustrated, the calculation is particularly simple: we start

from the leaves of the subgraph �empty circles� whose PR is
just q /n because they have no incoming links, and move
towards A. For each node, we apply the relation �10�. The
final values are reported next to the nodes. From this ex-
ample we can deduce a number of general properties: �1� all
PR values are multiples of the elementary unit q /n; �2� PR
increases if one moves from a node to another by following
a link; �3� the PR of each node i, in units of q /n, equals the
number of its predecessors. Since PR takes only discrete val-
ues, in the following we shall measure it in units of q /n. We
thus indicate the distribution as PPR�l�, with l=1,2 , . . . ,n.

In a dynamic process like network growth, it is crucial to
see what happens to the PR values and distribution when a
new node comes into the picture. This is shown in Fig. 2,
where a new node N is added to the network of Fig. 1. We
see that only the nodes encountered along the path from N to
A, including A, are affected, while the others retain their PR
values. In particular, the presence of the node N determines
an increase by q /n in the PR values of the affected nodes.

Now we are ready to build a master equation for the PR
distribution PPR�l� on a DMS graph. At time n, the graph has
n nodes and n−1 links �the root does not generate links�; the
PR distribution is PPR

n �l�. If we add node n+1 we get a new
distribution PPR

n+1�l�. As we have seen above, the new node
will contribute an additional q /n to the PR of the nodes in
the path from n+1 to the root of the graph. We need to
compute the balance between the nodes passing from PR
l−1 to l and those passing from l to l+1. The probability �i

n

that the PR of node i, initially equal to l, will be changed by
the new node equals the probability that the link set by the
new node gets attached to one of the predecessors of i �in-
cluding i�, and is given by

�
�
�
�
�
�
�
�
�
�
�

Network

q
n

q
n

2q
n

2q
n

q
n

5q

7q
n

n

A

FIG. 1. �Color online� Subgraph of a tree. The PR values of all
nodes shown can be simply calculated.
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�i
n = �

j⇒i

a + kj

�
t=1

n

�a + kt�

= �
j⇒i

a + kj

�a + 1�n − 1
, �11�

where j⇒ i means that j is a predecessor of i. None of the
predecessors of i, other than i, can reach PR l+1 because of
the new node, as their initial values are necessarily smaller
than l. The number of predecessors of i �including i� is l, and
the total number of adjacent links to the predecessors is
l−1 �one for each predecessor, except i�. So

�i
n = �

j⇒i

a + kj

�a + 1�n − 1
=

�a + 1�l − 1

�a + 1�n − 1
. �12�

The number of nodes with PR l that are affected by the
presence of the new node and its link is then

�n�l� = nPPR
n �l��i

n =
�a + 1�l − 1

�a + 1� − 1/n
PPR

n �l� . �13�

and the master equation reads

�n + 1�PPR
n+1�l� − nPPR

n �l� = �n�l − 1� − �n�l� . �14�

Equation �14� holds for l�1. For l=1 a modification is nec-
essary, as there cannot be nodes with zero PR, so the term
�n�0� is not defined. However, since the new node has no
incoming links, the number of nodes with PR 1 increases by
1 because of the new node, so we can write

�n + 1�PPR
n+1�1� − nPPR

n �1� = 1 − �n�1� . �15�

The stationarity condition of Eqs. �14� and �15� in the limit
of large n leads to the relations

PPR�l� = �
�a + 1�l − a − 2

�a + 1�l + a
PPR�l − 1� if l � 1,

a + 1

2a + 1
if l = 1, � �16�

which has the solution

PPR�l� =
a�a + 1�

��a + 1�l + a���a + 1�l − 1�
�

1

l2 , for l � 1.

�17�

We see that the PR distribution in the limit q→0 on a DMS
tree is a power law with exponent 2, for any value of the
parameter a, including the limit case a→	, when the inde-
gree distribution becomes exponential. This result is con-
firmed by numerical simulations �Fig. 3�, which also show
that the hypothesis of the tree is not necessary, as long as
each node has the same outdegree m.

In �16� the same result was found for other models of
network growth, like Barabási-Albert preferential attachment
�17� and the copying model �19�. It is possible that this prop-
erty holds for general graphs where the flows converge to-
ward a central root �sink�. Indeed, our finding agrees with the
more general result on the size distribution of supercritical
trees �20�. Moreover, numerical studies have shown that the
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FIG. 2. �Color online� If a new node N gets attached to any node
of the subgraph, it adds an equal contribution q /n to the PR of all
nodes in the path from N to the root.
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FIG. 3. �Color online� PR distribution for small q on a DMS
graph with 106 nodes, m=1, and a=1. In this case the indegree
distribution is a power law with exponent �=3.
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same behavior holds for the graph of the Internet, when one
considers the distribution of the size of the basin connected
to a given point �21�. Indeed, our calculation follows the
same procedure usually adopted for the calculation of the
area of basins in river networks.

2. The limit q\1

The case q=1 is well defined, but trivial, as all nodes end
up having the same PR value 1 /n. We ask how this limit is
reached. If q�1, the contribution to PR given by the in-
neighbors of a node is very small compared to the constant
term, which is close to 1 /n. In order to study the behavior of
this term, we define the reduced PageRank pr�i� of a node i
as

pr�i� = p�i� −
q

n
, i = 1,2, . . . ,n . �18�

We assume that all nodes have the same outdegree m. In this
case, to leading order in the infinitesimal 1−q Eq. �1� can be
rewritten as

pr�i� =
q�1 − q�

mn
kin�i�, i = 1,2, . . . ,n . �19�

where kin�i� is the indegree of i. We conclude that on any
graph the reduced PR of a node in the limit q→1 is propor-
tional to the indegree of the node, if all nodes have the same
outdegree. This result has been derived independently in
�22�. As a consequence of Eq. �19�, the distribution of the
reduced PR for q→1 has the same trend as that of the inde-
gree, which can be easily verified numerically �Fig. 4�.

3. Extension to undirected graphs

PR can be easily extended to undirected graphs as well.
The corresponding equation reads

p�i� =
q

n
+ �1 − q� �

j:j↔i

p�j�
kj

, i = 1,2, . . . ,n , �20�

where now kj is the degree of node j. For the purposes of a
random walk, undirected links can be crossed in both direc-

tions, so a pure random walk now always reaches stationarity
due to the absence of dangling ends. In fact, the stationary
probability of a random walk on a node of any undirected
graph is simply proportional to the degree of the node �23�.
However, in Eq. �20� we have still the contribution of ran-
dom jumping, and it turns out that the mixed process is still
hard to solve. We are not aware of a general solution in this
case. In the limit q→0 PR is now well behaved, and its
distribution coincides with the degree distribution of the
graph. In Fig. 5 we show the distributions of reduced PR for
different values of q on a DMS graph with a power-law
degree distribution and exponent �=3. The reduced PR ex-
presses the contribution to PR given by the random walk. We
see that the curves follow the decay of the degree distribu-
tion for any value of q. We have computed the reduced PR
distribution on many other graphs, and in all cases we found
that they follow the same trend as the degree distribution.
For example, in Fig. 6 we show the comparison between
reduced PR and degree for a sample of the Web link graph.
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FIG. 4. �Color online� Reduced PR distribution for q�1 on a
DMS graph with 106 nodes, m=1, and a=1. The curve matches the
indegree distribution.
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FIG. 5. �Color online� Reduced PR on undirected graphs. Vari-
ability of reduced PR distribution with q on a DMS graph with 106

nodes, m=3, and a=3. The degree distribution has a power-law tail
with exponent �=3.
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FIG. 6. �Color online� Reduced PR on undirected graphs. Vari-
ability of reduced PR distribution with q on the domain .gov of the
World Wide Web. The degree distribution has a tail which follows
fairly well a power law with exponent 2.1. To better show the
agreement we have shifted the curves such that the tails overlap.
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Here the nodes are Web pages of the domain .gov and two
pages are connected if there is a hyperlink from one to the
other. There are 794 184 nodes and 6 460 903 links. The
graph is directed but PR was calculated by neglecting the
directedness of the links. As we can see, the decay of the
distributions of reduced PR resembles that of the degree dis-
tribution. The graph at hand is not simple like the DMS
networks, as it presents a large number of loops and commu-
nity structure. Therefore the result is likely to be general. We
can show this with a simple argument. The general equation
for reduced PR on undirected graphs is

pr�i� =
�1 − q�q

n
�

j:j↔i

1

kj
+ �1 − q� �

j:j↔i

pr�j�
kj

, �21�

which we can solve formally by successive iteration, obtain-
ing the general form

pr�i� =
q

n
�

s

�1 − q�s�
i1

1

ki1

�
i2

1

ki2

. . . �
is

1

kis

=
q

n
�

s

�1 − q�s 	
i1↔i2¯↔is

1

kis

, �22�

where is indicates the neighbors of the s shell of the node i;
so i1 indicates the nearest neighbors of i, i2 the next-to-
nearest neighbors, and so on. The last sum in the first line of
Eq. �22� is, for a given node is−1, a sum over its neighbors is.
This sum, which we call Tis

, contains kis
terms, kis

being the
degree of node is. The sum Tis

can be approximated as the
product kis


1 /k�NN, where 
1 /k�NN is the expected value of
the average of 1 /k over the neighbors of a node of the net-
work. In general, Tis

=kis

1 /k�NN+
is

, where 
is
is a random

variable with mean zero. In this way, it is easy to see from
Eq. �22� that, for any value of s, the product of sums reduces
to ki
1 /k�NN plus the sum of many random variables like 
is

.
Due to the central limit theorem, the latter sum, if it includes
a large number of terms, yields a very small value with large
probability. We can then conclude that, for ki sufficiently
large, each term of the series in Eq. �22� is proportional to ki
with good approximation; therefore pr�i� is also proportional
to ki, for any value of the damping factor q. We have verified
numerically that this assertion is true for many graphs and
degree distributions, without finding exceptions.

B. Eigenvector centrality

1. Directed graphs

The defining Eq. �4� is formally analogous to Eq. �10�.
The only difference is that the eigenvalue � is not 1 as for
PR. However, the results of Sec. III A 1 hold as well when
the outdegree m is greater than 1 �as long as it is the same for
all nodes�, and in this case the sum of Eq. �10� would include
a multiplicative factor 1 /m, which makes it identical to Eq.
�4�. We then deduce that all results found for PR in the limit
q→0 hold for �EV. Here the results are more general, be-
cause we did not need to make any approximation to get to
Eq. �4� as we instead needed to derive Eq. �10�. In particular,
it is not necessary that � be very small and the nodes need

not have the same outdegree, although this is the case for the
graphs we considered. We conclude that the distribution of
�EV on DMS graphs has a power-law tail with exponent 2
�Fig. 7�. The same holds for graphs built using preferential
attachment and the copying model, just as it happens for PR
in the limit q→0.

2. Extension to undirected graphs

On undirected graphs, Eq. �4� becomes

xi = ��Ax�i + � , �23�

since At=A. So, the �EV of a node is proportional to the sum
of the �EV of its neighbors, modulo an additive constant �.
As we have done for PR, we define the reduced �-centrality
as

xi
r = xi − � . �24�

So we can rewrite Eq. �24� as

xi
r = ��Axr�i + ki�� , �25�

where ki is again the degree of node i. We can apply a similar
argument as in Sec. III A 3. The sum over the ki neighbors of
i can be approximated as ki
xr�, where 
xr� is the average of
the reduced �EV over the whole graph. The approximation
is the more valid the larger the number ki of summands. In
this way, from Eq. �25� we see that the reduced �EV of a
node is proportional to its degree, if the latter is large
enough. This result is independent of the specific graph we
consider, and we have verified it numerically for many types
of networks. In Fig. 8 we show the distribution of reduced
�EV for different choices of the parameter � /� for the
sample of the Web graph we analyzed in Fig. 6. The curves
closely follow the decay of the degree distribution.

C. HITS scores

The meaning of the eigenvalue equations �7� and �8� is
quite simple. The hub score of a node is the sum of the hub
scores of the in-neighbors of the out-neighbors of the node.
The authority score of a node is the sum of the authority
scores of the out-neighbors of the in-neighbors of the node
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FIG. 7. �Color online� Distribution of �EV on a directed DMS
graph with 106 nodes, m=1, and a=1. The dashed line indicates the
predicted slope.
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�Fig. 9�. Let us suppose that the nodes have the same outde-
gree m. The authority score of a node i is given by the sum of
mkin�i� terms, where kin�i� is the indegree of i. In fact, node i
has kin�i� in-neighbors, each of them having m out-neighbors.
If kin�i� is large, the number of summands is very large, and
can be approximated by the average value of the authority
score over the whole graph, times mkin�i�. This approxima-
tion is the more valid the larger m and kin�i�. We conclude
that on a directed graph with constant outdegree the distri-
bution of the authority scores will have the same tail as the
indegree distribution. This is clearly illustrated in Fig. 10.
For the hub scores it is not possible to make predictions; the
sum that delivers the hub score of a node cannot be approxi-
mated through other graph variables in most cases.

The extension of the HITS scores to the case of undirected
graphs is not interesting. In this case At=A, so AtA=AAt

=A2 and the hub and authority scores are identical. More-
over, they coincide with EV, as the matrices A and A2 have
the same eigenvectors.

IV. RANKINGS

In the previous sections we have investigated the distribu-
tions of spectral centrality measures and their similarities. As

we mentioned in the Introduction, centrality measures are
used to rank nodes. In this section we shall compare the
rankings obtained with different centrality measures. In order
to compare two rankings we adopt Kendall’s � �24�, a widely
used index in this type of analysis. Kendall’s � ranges from 1
�perfect correlation� to −1 �perfect anticorrelation�. In Table I
we show the cross comparisons between all centrality mea-
sures we discuss in this work, for a DMS directed graph. For
completeness we have included the outdegree as well. As we
can see, PR, �EV, and the authority scores are well corre-
lated with indegree and with each other, whereas the other
coefficients are small or negative; �EV has a strong correla-
tion with outdegree as well.

DMS graphs have a fairly regular structure; we have seen
that in this case the behavior of centrality measures is quite
regular, and that there are simple relations between their dis-
tributions, which may be determined by simple relations be-
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FIG. 8. �Color online� Reduced �EV on undirected graphs. Vari-
ability of reduced �EV distribution with � /� on the domain .gov of
the World Wide Web. The degree distribution has a tail which fol-
lows fairly well a power law with exponent 2.1. To better show the
agreement we have shifted the curves such that the tails overlap.
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TABLE I. Kendall’s � for each pair of centrality measures com-
puted for a DMS directed graph, with n=106, m=3, and a=3.

Measure �

PR-�EV 0.8192

PR-AUTH 0.5774

PR-HUBS 0.1213

PR-IN 0.6444

PR-OUT −0.3012

�EV-AUTH 0.5788

�EV-IN 0.6487

�EV-HUBS 0.1220

�EV-OUT 0.5788

AUTH-IN 0.5458

AUTH-HUBS 0.1076

AUTH-OUT −0.2611

HUBS-IN 0.1142

HUBS-OUT −0.2126

IN-OUT −0.2507
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tween a measure and indegree at the level of the single node.
Therefore, we cannot deduce general conclusions from Table
I and we repeated the analysis for two real-world networks: a
network of political blogs and the subset of the Web link
graph corresponding to the URLs of the domain .gov, that we
have studied in the previous sections.

The first network is a citation network consisting of 1490
blogs; 758 are Democratic and 732 Republican. It was first
studied by Adamic and Glance �25�, who focused on the
community structure of the graph, which matches that deter-
mined by the two political areas. The correlations now are
rather weak �Table II�. The small coefficients indicate that
the rankings differ considerably with the measure chosen. To
have an idea, in Table III we show the top ten blogs in the
rankings obtained with all centrality measures. We see that
there are clear differences between the listings.

The results are basically the same for the Web graph.
Table IV reports the Kendall’s � between the rankings. The
values are of the same magnitude as for the network of the
blogs. The top ten listings for the Web are shown in Table V
and appear again considerably different from each other.

V. CONCLUSIONS

Centrality measures are very important to understand the
properties of the nodes of complex networks and their topo-
logical roles. We have studied the most important centrality
measures based on properties of graph matrices: PageRank,
EV, and the hub and authority scores of HITS. All these mea-
sures deduce the importance of a node in a self-consistent
way from the importance of its nearest neighbors and, in the
case of the HITS scores, of its next-to-nearest neighbors. We
have summarized some recent results on PageRank distribu-
tions on particular types of treelike graphs. On those graphs,
the distribution of PageRank in the limit q→0 decays as a

TABLE II. Kendall’s � for each pairs of centrality measures for
the network of political blogs studied by Adamic and Glance.

Measures �

PR-�EV 0.09

PR-AUTH 0.14

PR-HUBS 0.04

PR-IN 0.14

PR-OUT 0.02

�EV-AUTH 0.12

�EV-IN 0.07

�EV-HUBS 0.08

�EV-OUT 0.01

AUTH-IN 0.12

AUTH-HUBS 0.07

AUTH-OUT 0.01

HUBS-IN 0.02

HUBS-OUT 0.07

IN-OUT 0.07

TABLE III. Top ten of the network of political blogs according to PR, �EV, authorities, hubs, indegree and outdegree. D Democratic; R,
Republican.

Rank PR �EV Auth

1° dailykos.com, D atrios.blogspot.com, D dailykos.com, D

2° atrios.blogspot.com, D dailykos.com, D talkingpointsmemo.com, D

3° instapundit.com, R talkingpointsmemo.com, D atrios.blogspot.com, D

4° blogsforbush.com, R washingtonmonthly.com, D washingtonmonthly.com, D

5° talkingpointsmemo.com, D talkleft.com, D talkleft.com, D

6° michellemalkin.com, R prospect.org/weblog, D instapundit.com, R

7° drudgereport.com, R juancole.com, D juancole.com, D

8° washingtonmonthly.com, D digbysblog.blogspot.com, D yglesias.typepad.com/matthew, D

9° powerlineblog.com, R pandagon.net, D pandagon.net, D

10° andrewsullivan.com, R yglesias.typepad.com/matthew, D digbysblog.blogspot.com, D

Rank Hubs In Out

1° politicalstrategy.org, D dailykos.com, D blogsforbush.com, R

2° madkane.com/notable.html, D instapundit.com, R newleftblogs.blogspot.com, D

3° liberaloasis.com, D talkingpointsmemo.com, D politicalstrategy.org, D

4° stagefour.typepad.com/commonprejudice, D atrios.blogspot.com, D madkane.com/notable.html, D

5° bodyandsoul.typepad.com, D drudgereport.com, R cayankee.blogs.com, R

6° corrente.blogspot.com, D powerlineblog.com, R liberaloasis.com, D

7° aurelientt.blogspot.com, D blogsforbush.com, R lashawnbarber.com, D

8° tbogg.blogspot.com, D washingtonmonthly.com, D gevkaffeegal.typepad.com/thealliance, R

9° newleftblogs.blogspot.com, D michellemalkin.com, R presidentboxer.blogspot.com, R

10° atrios.blogspot.com, D truthlaidbear.com, R corrente.blogspot.com, D
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power law with exponent 2. The same is true for �-centrality,
because its defining equation is formally equivalent to the
equation for PageRank in the limit q→0. These results on
centrality distributions are likely to be true for an extended
class of graphs, where there is a flow from the outermost

nodes �leaves� to a sink. We have also seen that, on any
graph, in the limit q→1, the reduced PageRank of a node,
i.e., the contribution of the random walk process to the mea-
sure, is simply proportional to the indegree of the node, if the
nodes have �about� the same outdegree. We have studied the
extension of PageRank to the case of undirected networks,
finding that the reduced PageRank of a node is proportional
to its degree, for large degrees, for any graph and value of q.
We proposed a simple explanation of this effect based on the
Central Limit Theorem, and verified numerically in several
cases that the argument holds. Similarly, the reduced
�-centrality of a node is also proportional to its degree, for
large degrees, on any graph. With the same type of argument
it is possible to show that the authority score of a node is
proportional to its indegree, for large indegrees, when the
outdegrees of all nodes are �approximately� the same.

We conclude that there are often strong relations between
our centrality measure and �in�degree: some relations hold
on particular graphs and/or limits, others are more general.
These findings imply that the measures are often strongly
correlated with each other. We have indeed seen that the
rankings of nodes according to the centrality measures we
have considered are quite close to each other for indegree,
PageRank, EV, and authority score on graphs built with the
prescription of Dorogovtsev, Mendes, and Samukhin. We
have shown in the paper that these graphs have special prop-
erties, and that some measures may be correlated with each
other. Instead, on real graphs, like the networks of political

TABLE IV. Kendall’s � for each pair of centrality measures for
the domain .gov of the Web.

Measures �

PR-�EV 0.189

PR-AUTH 0.079

PR-HUBS 0.060

PR-IN 0.155

PR-OUT 0.090

�EV-AUTH 0.081

�EV-IN 0.147

�EV-HUBS 0.074

�EV-OUT 0.086

AUTH-IN 0.046

AUTH-HUBS 0.109

AUTH-OUT 0.072

HUBS-IN 0.003

HUBS-OUT 0.056

IN-OUT 0.081

TABLE V. Top ten of the web domain .gov according to PR, �EV, authorities, and indegree.

Rank PR �EV

1° www.usgs.gov polar.wwb.noaa.gov/waves/main�int.js

2° www.nws.noaa.gov polar.wwb.noaa.gov/waves/welcome.html

3° www.naca.larc.nasa.gov/readme.html polar.wwb.noaa.gov/waves/main�table.html

4° www.usda.gov polar.wwb.noaa.gov/waves/products.html

5° www.nws.noaa.gov/disclaimer.html polar.wwb.noaa.gov/waves/main�int.html

6° www.ar.inel.gov/home.htm www.nws.noaa.gov/disclaimer1.html

7° www.4woman.gov/search/search.cfm www.nws.noaa.gov

° www.nws.noaa.gov/feedback.shtml polar.wwb.noaa.gov/waves/references.htm

9° www.access.wa.gov polar.wwb.noaa.gov/waves/validation.htm

10° www.usinfo.state.gov/products/pdq/pdq.htm polar.wwb.noaa.gov/waves/valid�wna.html

Rank Auth In

1° www.srh.noaa.gov/oun/cgi-bin/
wxclick.pl?county�oklahoma

www.usgs.gov

2° www.srh.noaa.gov/oun/cgi-bin/
wxclick.pl?county�cleveland

www.cdc.gov

3° www.srh.noaa.gov/oun/cgi-bin/wxclick.pl?county�kiowa www.usda.gov

4° www.nws.noaa.gov www.doi.gov

5° www.srh.noaa.gov/oun/cgi-bin/wxclick.pl?county�logan www.nws.noaa.gov

6° www.srh.noaa.gov/oun/cgi-bin/wxclick.pl?county�payne www.usgs.gov/disclaimer.html

7° www.srh.noaa.gov/oun/cgi-bin/wxclick.pl?county�knox www.usda.gov/news/privacy.htm

8° weather.noaa.gov www.abag.ca.gov

9° weather.noaa.gov/weather/ok�cc�us.html www.ars.usda.gov/nodisc.html

10° www.crh.noaa.gov/ddc www.ars.usda.gov/comm.htm
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blogs and the sample of the Web graph we have considered,
the structure is less regular and the measures are far less
correlated with each other, as confirmed by the small values
of the Kendall’s � for each pair of centrality measures. This
means that, for practical purposes, and in spite of their simi-
larities, spectral centrality measures look at nodes from dif-
ferent perspectives, and allow to diversify their roles within
the network, obtaining in this way more information about
the importance of nodes. The scores computed from spectral
centrality measures can complement the information about
the node’s centrality derived from more traditional measures

like node betweenness �26�. This is especially important for
directed graphs, where node betweenness, as well as other
measures based on geodesic paths, like closeness �27�, are
not well defined.
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